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Endothelial injury and dysfunction: Role in the extension phase
of acute renal failure. The pathophysiology of ischemic acute
renal failure (ARF) involves a complex interplay between re-
nal hemodynamics, tubular and endothelial cell injury, and in-
flammatory processes. A growing body of evidence supports
the contribution of altered renal vascular function, especially at
the microvascular level, in initiating and subsequently extend-
ing the initial tubular injury. The extension phase of ischemic
ARF involves continued reduction in renal perfusion, ongoing
hypoxia, and inflammatory processes that occur during reper-
fusion and contribute to continued tubular cell injury. Vascular
endothelial cell injury and dysfunction play a vital part in this ex-
tension phase. With injury, the endothelial cell loses its ability to
regulate vascular tone, perfusion, permeability and inflamma-
tion/adhesion. This loss of regulatory function has a detrimental
impact upon renal function. Vascular congestion, edema for-
mation, diminished blood flow, and infiltration of inflammatory
cells have been documented in the corticomedullary junction
of the kidney. However, linking their genesis to microvascu-
lar endothelial injury and dysfunction has been difficult. New
diagnostic and therapeutic approaches to ischemic ARF must
incorporate these finding to devise early recognition strategies
and therapeutic approaches.

The cellular and molecular events involved in ischemic
acute renal failure (ARF) have been identified and a
much more complete understanding of how these events
result in cellular and organ dysfunction has been estab-
lished. Growing evidence indicates renal vascular en-
dothelial injury and dysfunction play an important part
in initiating and extending renal tubular epithelial injury
and thus contribute to the ongoing pathogenesis of is-
chemic ARF. In fact, what is becoming rapidly appar-
ent is that the lack of adequate renal cortical-medullary
reperfusion may be more deleterious than the classical
“reperfusion injury” secondary to oxygen and nitroge-
nous free radical formation. Therefore, the purpose of
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this review is to summarize what is known about endothe-
lial injury/dysfunction during and following ischemia in
the kidney, and to place these data into a unifying hypoth-
esis regarding immediate and delayed epithelial cell in-
jury and organ dysfunction. Finally, how therapy of ARF
should take into account the pathophysiology of endothe-
lial dysfunction will be discussed.

VASCULAR ENDOTHELIUM AS AN ORGAN

The concept of the endothelium as an organ has be-
come widely appreciated [1] given the recent recognition
of the consequences of endothelial injury and dysfunc-
tion in a range of disease states such as sepsis, hemolytic
uremic syndrome/thrombotic thrombocytopenic purpura
(HUS/TTP), diabetes, and hypertension. The endothe-
lium regulates vascular permeability and modulates vaso-
motor, inflammatory, and hemostatic responses. Impair-
ment of these vital endothelial cell functions during and
following renal ischemia can contribute to the impair-
ment of renal perfusion, continued renal hypoxia, and
the subsequent epithelial cell injury and diminution in
glomerular filtration rate (GFR) that are the hallmarks
of ARF. Endothelial cells in different vascular beds have
different characteristics [2]. Therefore, as the environ-
ment within the kidney changes dramatically from the
outer cortex to the medullary region, endothelial cells
may differ considerably within the kidney from region to
region.

EXTENSION PHASE OF ARF

The extension phase of ischemic ARF is ushered in
by two major events: (1) continued hypoxia following
the initial ischemic event and (2) an inflammatory re-
sponse [3]. Both events are more pronounced in the cor-
ticomedullary junction (CMJ), or outer medullary region,
of the kidney. Documentation of severely reduced blood
flow, stasis, and accumulation of red blood cells and white
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blood cells has been historically noted; however, the ep-
ithelial ramifications of these events have only recently
been uncovered [4, 5]. It is during this phase that renal
vascular endothelial cell damage likely plays a key role in
the continued ischemia of the renal tubular epithelium,
as well as, the inflammatory response observed with is-
chemic ARF. During this phase, S3 proximal tubule and
thick ascending limb cells, as well as endothelial cells,
continue to undergo injury and death with both necrosis
and apoptosis being present predominantly in the outer
medulla [6]. In contrast, the proximal tubule cells in the
outer cortex, where blood flow has returned to near nor-
mal levels, undergo cellular repair and improve morpho-
logically during this phase. As cellular injury continues
in the CMJ region during the extension phase, the GFR
continues to fall. There is continued production and re-
lease of chemokines and cytokines that further enhance
the inflammatory cascade.

ISCHEMIC ARF—ALTERATIONS IN RENAL
PERFUSION

A decrease in renal blood flow is of critical impor-
tance in initiating and extending the pathophysiology of
ischemic ARF. Under physiologic conditions, the oxygen
tension of the kidney decreases as one moves from the
outer cortex to the inner medulla [7]. Regional alterations
in renal blood flow persist after the initial ischemic event
and play an important role in the extension phase of re-
nal ischemic injury. During reperfusion a reduction in
total renal blood flow of 40% to 50% of normal has been
reported in both animal models of ischemic ARF and
in human ischemic ARF [8]. Studies have demonstrated
a persistent reduction in renal blood flow contributes
significantly to the diminished GFR observed in human
renal allografts following ischemic ARF [9]. These persis-
tent perfusion deficits have been demonstrated to be of
greater magnitude in the outer medulla than in the outer
cortex or inner medulla in an animal model of ischemic
ARF [10, 11].

Mechanisms involved in the alteration of renal per-
fusion following ischemic injury are incompletely un-
derstood. An imbalance between mediators of renal
vasoconstriction and renal vasodilatation has been pro-
posed to play a role in animal models of ischemic ARF.
In support of this, antagonists to endogenous vasocon-
strictors have been shown to ameliorate renal ischemic
injury in animal models [12–14]. The role various vasore-
active mediators may play in controlling renal vascular
tone following ischemic injury has been the subject of a
recent review [15].

Congestion of the renal microcirculation, especially in
the peritubular capillaries of the outer medullary region
(vasa recta), contributes to deficits in renal perfusion.
Accumulation of red blood cells and leukocytes in the

outer medulla has been demonstrated in animal mod-
els of ischemic ARF as well as in human ischemic ARF
[10, 16–18]. This medullary congestion has been proposed
to shunt blood flow away from the outer medulla resulting
in continued hypoxia and cellular injury in this area. Ex-
perimental maneuvers to diminish trapping of red blood
cells and leukocyte attachment in the renal microcircu-
lation have been demonstrated to improve morphologic
and functional aspects of renal injury in animal models
of ischemic ARF [14, 19–22].

ISCHEMIC ARF—MORPHOLOGY OF
VASCULAR INJURY

Interestingly, no consistent morphologic changes of the
renal vascular endothelium in ischemic ARF have been
reported. In part this may be due to sampling bias in
human ischemic ARF (i.e., predominantly cortical vs.
medullary tissue on biopsy) and difficulty in visualiz-
ing the endothelium of potentially affected microvascu-
lature in animal models. However, Sutton et al [23], using
TIE2/GFP mice with selective endothelial cell expression
of GFP, have shown actin cytoskeletal and junctional al-
terations occur in renal microvascular endothelial cells
during ischemic injury in vivo.

Evidence of endothelial dysfunction and injury in other
organ systems, as a result of ischemic injury, lends cre-
dence to the concept that endothelial dysfunction and in-
jury play an important role in ischemic ARF. Separation
of endothelial tight junctions, loss of endothelial attach-
ment to the basement membrane, endothelial blebbing,
and endothelial necrosis have been described in the cere-
bral and coronary vasculature following ischemic injury
[24, 25]. In patients experiencing septic shock, a condi-
tion which shares many pathologic derangements with
ischemic injury and is often a concomitant condition in
human ischemic ARF [26], detached, circulating en-
dothelial cells have been documented [27]. Potential func-
tional consequences of these morphologic alterations
include altered vascular reactivity, increased vascular
permeability, increased leukocyte adherence and ex-
travasation, and altered coagulation due to loss of nor-
mal endothelial function and/or barrier. Furthermore,
circulating activated endothelial cells could potentially
contribute to distant organ effects often attributed to
leukocytes, such as pulmonary dysfunction following
ischemic ARF [28].

ISCHEMIC ARF—FUNCTIONAL ASPECTS OF
ENDOTHELIAL INJURY

Alterations in endothelial permeability

Increased renal peritubular capillary permeability has
been documented as a consequence of ischemic ARF
in animal models [21–23]. Two general mechanisms can
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account for increased endothelial permeability during
ischemic injury: (1) increased paracellular permeabil-
ity and/or (2) increased transcellular permeability [29].
Increased interstitial edema may contribute to further
diminishing the compromised medullary blood flow by
compressing peritubular capillaries [30]. Additionally,
leakage of plasma from the vascular space through a leaky
endothelium contributes to hemoconcentration that can
lead to stasis and diminished perfusion in the CMJ as ob-
served in other organs [31]. Hemoconcentration and sta-
sis also increases the potential for endothelial-leukocyte
interactions. Activated leukocytes can initiate an inflam-
matory cascade that leads to further endothelial cell
injury and further dysfunction of the endothelial perme-
ability barrier [32]. This may be particularly important in
the medullary region as endothelial cells there, but not
in the cortex, express surface markers important in lym-
phocyte activation [33].

Alterations in endothelial-leukocyte interactions

Endothelial-leukocyte interactions mediated through
complementary adhesion molecules on endothelial cells
and leukocytes play a key role in the local accumulation
of leukocytes. Ischemic injury has been demonstrated to
increase expression of P- and E-selectin on the surface of
endothelial cells [34, 35]. Increased expression of intercel-
lular adhesion molecule-1 (ICAM-1) by endothelial cells
has also been demonstrated in vitro in response to oxidant
injury [36]. The functional significance of these findings
in ischemic ARF is underscored by evidence in animal
models that inhibition of P- and E-selectin–mediated
binding of leukocytes [20] and inhibition of ICAM-
1–mediated binding of leukocytes [37] decreases renal
injury. Endothelial cell injury and dysfunction may addi-
tionally contribute to the inflammatory response through
loss of normal endothelial nitric oxide production [5, 38].

Alterations in coagulation

Fibrin deposition in the microvasculature following
ischemic injury has been noted in a variety of organs
systems, including the kidney [39]. Although the consti-
tutive state of endothelial cells is an anticoagulant state,
injury and activation of endothelial cells can induce a
procoagulant response. Whether or not this occurs dur-
ing prerenal azotmia is unknown. Furthermore, loss of
nitric oxide production by injured endothelial cells may
also contribute to an overall procoagulant state through
loss of its inhibitory role on cytokine-induced expression
of tissue factor [40]. While abnormalities in coagulation
per se may have a deleterious role in ischemic ARF, re-
cent studies have shed light on the relative importance the
coagulation cascade plays as a mediator of inflammation
in ischemic ARF [41, 42].

FUTURE THERAPIES AIMED AT THE
EXTENSION PHASE

Recent advances made toward delineating the cellular
mechanisms involved ischemic ARF have not yet lead
to accepted therapeutic interventions that alter the nat-
ural course of ARF or improve the clinical outcome for
ARF [43]. Reviews outlining potential therapeutic strate-
gies for the treatment of ARF, and the barriers minimiz-
ing effective therapies, have been recently published [32,
44]. Human ARF is heterogeneous in its pathophysiol-
ogy. Consequently, combined therapies targeting more
than one pathophysiologic pathway may prove to be the
most beneficial approach [32, 44]. It is also necessary
to point out that differences may exist between animal
models of ARF and what has been documented to oc-
cur during human ARF [45, 46]. However, a major prob-
lem is the lack of clinical biopsy data, especially in the
CMJ area, during the early phases, initiation and exten-
sion, of human ARF. This has limited the ability to di-
rectly compare human and animal models of ischemic
ARF.

Therapies directed at processes during the extension
phase, including endothelial dysfunction/injury, and its
myriad of pathophysiologic implications, should have a
role in any therapeutic approach. Interrupting the am-
plification of this hypoxic and inflammatory cascade has
important therapeutic implications. Therefore, early
recognition of renal injury and prompt intervention re-
main important clinical challenges in this field [47].

CONCLUSION

A growing body of evidence lends support to the role
endothelial dysfunction plays in overall renal injury dur-
ing ischemic ARF. This may be especially important dur-
ing the early events of ischemic ARF. Given that the
endothelium is central to the myriad of biologic processes
performed by the microvasculature, endothelial injury
and dysfunction are crucial factors in the overall alter-
ation of vascular function during both the initiation and
the extension phase. Further investigation into the mech-
anisms of endothelial injury and dysfunction during the
extension phase should provide further insight into the
pathophysiology of ischemic ARF and reveal additional,
as well as, novel therapeutic interventions.
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